170
Bioinformatics of the Brain
[12] K. S. Miller and B. Ross, “An introduction to the fractional calculus and
fractional differential equations,” 1993.
[13] K. B. Oldham and J. Spanier, “The fractional calculus: Theory and ap-
plications of differentiation and integration to arbitrary order,” 1974.
[14] R. L. Bagley and P. J. Torvik, “A theoretical basis for the application
of fractional calculus to viscoelasticity,” Journal of Rheology, vol. 27,
pp. 201–210, 1983.
[15] T. Machado, V. S. Kiryakova, and F. Mainardi, “A poster about the
recent history of fractional calculus,” Fractional Calculus and Applied
Analysis, vol. 13, pp. 329–334, 2010.
[16] J. T. Machado, V. S. Kiryakova, and F. Mainardi, “Recent history of
fractional calculus,” Communications in Nonlinear Science and Numeri-
cal Simulation, vol. 16, pp. 1140–1153, 2011.
[17] K. Diethelm, “The analysis of fractional differential equations: An
application-oriented exposition using differential operators of caputo
type,” 2010.
[18] R. Hilfer, “Applications of fractional calculus in physics,” 2000.
[19] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applica-
tions of fractional differential equations,” 2006.
[20] I. Podlubny, “Fractional differential equations,” 1998.
[21] S. G. Samko, A. A. Kilbas, and O. I. Marichev, “Fractional integrals and
derivatives: Theory and applications,” 1993.
[22] B. Baeumer, M. Kovács, and M. M. Meerschaert, “Numerical solutions
for fractional reaction-diffusion equations,” Computers & Mathematics
with Applications, vol. 55, pp. 2212–2226, 2008.
[23] N. F. Britton, “Reaction-diffusion equations and their applications to
biology,” 1989.
[24] R. S. Cantrell and C. Cosner, “Spatial ecology via reaction-diffusion equa-
tions,” 2003.
[25] P. M. Grindrod, “The theory and applications of reaction diffusion equa-
tions: Patterns and waves,” 1996.
[26] F. Rothe, “Global solutions of reaction-diffusion systems,” 1984.
[27] L. b. Bachelier, “Theorie de la speculation, doctor thesis, annales scien-
tifiques ecole normale sperieure iii -17,”